Human rheumatoid arthritis tissue production of IL-17A drives matrix and cartilage degradation: synergy with tumour necrosis factor-α, Oncostatin M and response to biologic therapies
نویسندگان
چکیده
INTRODUCTION The aim of this study was to examine IL-17A in patients, following anti-TNF-alpha therapy and the effect of IL-17A on matrix turnover and cartilage degradation. METHODS IL-17A expression was examined by ELISA and immunohistology in the rheumatoid arthritis (RA) joints. RA whole synovial tissue explant (RA ST), primary synovial fibroblasts (RASFC), human cartilage and chondrocyte cultures were stimulated with IL-17A +/- TNF-alpha and Oncostatin M (OSM). Matrix metalloproteinase (MMP) and tissue inhibitor (TIMP-1) were assessed by ELISA and zymography. Cartilage proteoglycan release was assessed histologically by Safranin-O staining. Clinical parameters, IL-17A, MMP/TIMP were assessed in patients pre/post biologic therapy. RESULTS IL-17A levels were higher in RA vs osteoarthritis (OA)/normal joints (P < 0.05). IL-17A up-regulated MMP-1, -2, -9, and -13 in RA ST, RASFC, cartilage and chondrocyte cultures (P < 0.05). In combination with TNF-alpha and OSM, IL-17A shifted the MMP:TIMP-1 ratio in favor of matrix degradation (all P < 0.05). Cartilage proteoglycan depletion in response to IL-17A was mild; however, in combination with TNF-alpha or OSM showed almost complete proteoglycan depletion. Serum IL-17A was detected in 28% of patients commencing biologic therapy. IL-17A negative patients demonstrated reductions post therapy in serum MMP1/TIMP4, MMP3/TIMP1 and MMP3/TIMP4 ratios and an increase in CS846 (all P < 0.05). No significant changes were observed in IL-17A positive patients. CONCLUSIONS IL-17A is produced locally in the inflamed RA joint. IL-17A promotes matrix turnover and cartilage destruction, especially in the presence of other cytokines, mimicking the joint environment. IL-17A levels are modulated in vivo, following anti-TNF therapy, and may reflect changes in matrix turnover.
منابع مشابه
Interleukin 17 inhibits progenitor cells in rheumatoid arthritis cartilage
Mesenchymal stem cells are known to exert immunomodulatory effects in inflammatory diseases. Immuneregulatory cells lead to progressive joint destruction in rheumatoid arthritis (RA). Proinflammatory cytokines, such as tumour necrosis factor α (TNF-α) and interleukins (ILs) are the main players. Here, we studied progenitor cells from RA cartilage (RA-CPCs) that are positive for IL-17 receptors ...
متن کاملRheumatoid arthritis patients exhibit impaired Candida albicans-specific Th17 responses
INTRODUCTION Accumulating data implicate the CD4+ T cell subset (Th17 cells) in rheumatoid arthritis (RA). IL-17 is an inflammatory cytokine that induces tumor necrosis factor (TNF)α, IL-1β and IL-6, all of which are targets of biologic therapies used to treat RA. RA patients are well documented to experience more infections than age-matched controls, and biologic therapies further increase the...
متن کاملA model of inflammatory arthritis highlights a role for oncostatin M in pro-inflammatory cytokine-induced bone destruction via RANK/RANKL
Oncostatin M is a pro-inflammatory cytokine previously shown to promote marked cartilage destruction both in vitro and in vivo when in combination with IL-1 or tumour necrosis factor alpha. However, the in vivo effects of these potent cytokine combinations on bone catabolism are unknown. Using adenoviral gene transfer, we have overexpressed oncostatin M in combination with either IL-1 or tumour...
متن کاملPathogenesis of bone and cartilage destruction in rheumatoid arthritis.
Proinflammatory cytokines, such as interleukin-1 (IL-1) and tumour necrosis factor alpha (TNFalpha), have been implicated in the dysregulation of bone and cartilage remodelling characteristic of rheumatoid arthritis (RA). With respect to bone remodelling, both of these cytokines have been shown to up-regulate the production of the receptor activator of nuclear factor-kappaB ligand, which acts t...
متن کاملEx vivo model exhibits protective effects of sesamin against destruction of cartilage induced with a combination of tumor necrosis factor-alpha and oncostatin M
BACKGROUND Rheumatoid arthritis (RA) is an autoimmune disease associated with chronic inflammatory arthritis. TNF-α and OSM are pro-inflammatory cytokines that play a key role in RA progression. Thus, reducing the effects of both cytokines is practical in order to relieve the progression of the disease. This current study is interested in sesamin, an active compound in sesame seeds. Sesamin has...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Arthritis Research & Therapy
دوره 11 شماره
صفحات -
تاریخ انتشار 2009